近些年来,与数据分析相关的岗位越来越火热,拥有数据分析能力的数据分析人员,越来越受各大企业的欢迎。

某数据大拿说过,数据分析实现价值的最好状态是“不仅仅得到有创造力的数据分析结果,还要能够运用策略和各业务部门合作”,但是现状是,大部分企业第一步都没做好,又怎么去做第二步。
如果说互联网的数据分析“短平快”,那传统企业的数据分析工作更需要一步一步来。
传统行业的数据应用并不是十分先进:
这都决定了企业数据分析是一个被动而长线的工作。
从以往的实践来看,为什么有的领导会逐渐觉得数据重要,实际上很大原因是做了运算管理以后,领导能对比分析中下层的管理情况,能看到关心的结果,逐渐看到数据的价值。
那么,如果要让数据分析产生成吨的效果,并为领导认可记住。那我们就在一些症结问题,棘手的问题上用数据分析去解决,优先满足眼下,高品刚需的痛点。
日常,我们就把关键指标、关键绩效通过仪表盘展示出来。领导往往更关注实在的指标,例如销售额、核心客户数、亏损量,围绕这些指标去做分析,去帮助做KPI管理,有时更能带来实效。
决策过程是为分析提供场景。决策可以分为这样几个层面:最高的层面是战略决策,然后是战术决策,还有经营决策。它们的频度和影响是不一样的,战略层面上的影响非常大,一般企业每过5年、10年或者更大的一个周期,才会去做一个战略上的变化,战术的决策次之。
数据分析先要服务好经营层面的决策,服务好每个业务部门的核心目标。
操作上,在前期建立数据平台时,可以不断定一些目标,定一些主题,做成果展示,经常让业务人员以及领导分享,让其参与评价和建议,不断优化和改善,当相关人员都有参与感时,数据平台才会持久发展。
用一个有表现力的图表或报告让领导眼前一亮,也许背后开发的心血可能领导看不到,但是一个非常亮丽的报表尤其是在超越了领导期望的情况下才是IT的最高境界。数据分析要在领导下一个需求位置等而不是永远跟在他的需求后面跑,力求创新。

FineReport做的可视化驾驶舱
每个企业都不一样,老板不一样、管理方式不一样、信息化程度不一样。因此推动企业的数据分析进程需要根据各个公司的情况进行具体分析。以下列举几个行业的例子,案例都是帆软公司真实的客户,希望可以给大家一些启发,案例的具体细节这里就做隐匿处理了。
医药商业作为供应链的中间环节,在发挥物流配送功能的同时,承担着资金周转的重要职能,因此对于医药企业利润最大化的关键因素是毛利水平的提升和费用成本结构的优化。公司运用全成本核算的方法,创新了CVP价值分析模型,精确测算客户、品种、供应商的净利润水平,并进行因素影响分析,通过挖掘利润增长点,提供营销决策参考。
那么这个对于整个医药运营来讲一个算输入一个算输出,围绕着输入输出我们开展了几个维度的分析,客户层面的和业态层面的,第二个是供应商层面的,第三个是品种层面,然后是业务人员层面。在这个模型中,有很多指标,很多关键项因素,我们要让大家知道每个指标之间的关系是什么,每一项指标的语意的定义是什么并且统一。
于是,我们建立了上下一致的对数据理解的过程,除此之外利用这样一个架构去完成几个场景的决策。

制造业比较注重生产效率的提升,而生产效率受企业管理、制造、流程、创新等多因素的影响。比如在生产效率核算方面,通过记录考勤数据和生产线产量数据,导出各条生产线的实际消耗工时值,并通过实际与计划消耗工时的比值,计算各生产线的效率值。该效率值可用于合理安排各工段不同阶段的班次需求和人员配置方案。

一家新餐厅的开设,前厅和后厨的面积应该是怎样一个比例?二人桌、四人桌、八人桌以及包间该怎么搭配摆设?
这些信息在过去都是凭借经验去决定,通过对以往餐厅数据的统计和分析,可以得到一个准确的数据参考,降低开设的风险。
以往公司的领导比较热衷于大店的模式,但是到底适不适用,并没有一个准确的结论。后来针对这些门店做了一个评测方面的数据分析,分析每平方米可获得多少营收。最终发现小型门店所获得的效益要比大型门店高。因此针对这种情况,公司在战略上做出了相应的调整,降低部分大型门店的数量,增加小型门店。
操作上,在前期建立数据平台时,可以不断定一些目标,定一些主题,做成果展示,经常让业务人员以及领导分享,让其参与评价和建议,不断优化和改善,当相关人员都有参与感时,数据平台才会持久发展。
作者:李启方,专注数据分析和企业数据化管理;公众号:数据分析不是个事儿;系统学习数据分析,代表作《十周入门数据分析》系列
免责声明:本文版权归原作者所有,文章系作者个人观点不代表蜗牛派立场,如若转载请联系原作者;本站仅提供信息存储空间服务,内容仅为传递更多信息之目的,如涉及作品内容、版权等其它问题都请联系kefu@woniupai.net反馈!
]]>