Warning: Cannot modify header information - headers already sent by (output started at /www/wwwroot/woniupai.net/wp-load.php:19) in /www/wwwroot/woniupai.net/wp-includes/feed-rss2.php on line 8
数据分析师 – 蜗牛派 http://www.woniupai.net 关注大学生创业和职场励志的媒体博客! Sun, 26 Jul 2020 09:42:33 +0000 zh-CN hourly 1 https://wordpress.org/?v=5.4.18 http://www.woniupai.net/wp-content/uploads/2016/03/cropped-skidmark-32x32.png 数据分析师 – 蜗牛派 http://www.woniupai.net 32 32 从数据分析师、策略产品经理、再到数据产品经理的工作历程总结 http://www.woniupai.net/175398.html http://www.woniupai.net/175398.html#respond Sun, 26 Jul 2020 09:42:24 +0000 http://www.woniupai.net/?p=175398

工作前每个人对岗位都有自己心中的理解,工作后可能觉得事实不是想象的那样,但岗位是死的,人是活的;不管什么岗位,又一定的能力就能获得最好的结果。本文记录了我在数据岗位上走过的路,从数据分析师、到策略产品经理、再到数据产品经理,以及途中的憧憬、现实、困境与思考。

一、数据分析师的野望

1. 憧憬

“让数据说话”、“用数据讲故事”是很多初出茅庐数据分析师的美好愿景,我也不例外。

凭借一年数据分析实习生的经历,双非院校数学专业的我,成功混入微博;那年微信初露锋芒,而腾讯微博早已落败,微博的同事里还不乏清北的学霸;那年,我还不会SQL。

2. 现实

入职之后据我观察,数据分析师们的日常工作大致入下图分布:

少有人走过的路:分析、策略、产品

  1. 日常监控——公司重要业务和产品的表现好不好?如果出现了异常的波动,快速解释下是为什么?
  2. 效果评估——产品新上线了一个功能策略,运营新上线了一个活动,需要量化的评估下到底效果好不好?
  3. 业务决策——各个业务线的KPI该怎么定?在整个大环境下是该往A方向走还是该往B方向去?
  4. 专题研究——不同年龄段的用户都是怎么使用和看待产品的?哪些因素是用户留存的关键?
  5. 老板需求——(最紧急最重要的工作事项)解决各路老板的各种临时性看数据需求,比如上午产品总监说为什么这个功能这么少人用?、比如下午技术大佬说我这个新策略不可能才这么点儿提升你们是不是算错了?(就想算出个开心的数呗)、比如晚上快下班了CEO想起来体验下产品发现有个数据(比如他自己昨天发的某条微博的阅读量)跟他的直觉不符(wtf?)。

3. 困境

1)“老板,我想做PPT”:记得离职面谈的时候我主动提到,感觉最近一年的时间,我的产出主要都是Excel和邮件里直接回复一些数据结果,都很少有PPT。这个现象在我理解,就是产出不成型、不系统、拿不出手。

2)SQLboy和查数姑:记得有次加班到深夜,几个同事之间相互调侃,我们部门虽然叫数据管理部,但好像做的事情更多都是算数啊,改名叫算数中心好了。是的,我们60%+的时间和精力都耗费在各种常规的or临时的算数上面了,我们是数据时代的流水线工人

3)尴尬的组织架构:随着越来越多的公司认识到数据的重要性,有一种倾向就是会在所有业务线之下单独成立一个数据分析部门,这样做可以在某种程度上避免业务部门既当运动员又当裁判员的情况,也就是自卖自夸伪造效果。但问题也随之而来,既然不是自家人,那么肥水就不想流入外人田,高价值的工作内容(如决策建议)自然就不是很想让独立的数据分析部门染指;在这种情况下,数据分析师们更多的精力只能发泄在日常数据监控、效果评估和自娱自乐的研究性分析上。另外一种倾向,就是把分析师们打散安置在各个业务部门中,不过打听了下,他们的苦恼就是过于贴身、聚焦,导致视野被限制在一个狭小的范围内。但我总觉得,初级阶段的分析师们,还是在业务中会更好些。

4. 破局

1)用机器解放人力:人是肉做的,终究做不了没得感情的算数机器,机器的事儿,还是应该让机器来。数据分析师跟数据产品经理,应该是一对好基友,后者将业务理解与分析思路固化到产品上,争取一劳永逸的解决80%的常规算数需求,让分析师们有更多精力去做些高自我价值实现的研究和分析

少有人走过的路:分析、策略、产品

2)用系统思考提前应对老板们的脑洞:一线的从业者们作为某种程度上的体力劳动者,相对老板有天然的劣势:从大量日常琐碎体力劳动中解放出来的老板们,有更多的时间、更多的信息去思考。上帝一思考,人类就发慌。老板们的每一个散点式发问,对毫无思考储备的我们来说,都是一次降维打击。如果日常机器能帮我们释放一部分劳动力,我们就有更多时间去尝试思考下老板视角的问题,用一个相对完整的体系去应对老板的散点问题,避免被动挨打、牵着鼻子跑

3)用敏锐的目光避开外行老板:所有老板都有脑洞,但滋养脑洞的基础大相径庭。我们不应该苛求每个老板都是数据出身,但至少可以选择那些愿意尊重客观规律、或者秉承“让专业的人做专业的事”原则的老板。比什么都不懂更可怕的,是以为自己懂;比以为自己懂还要可怕的,是以为自己比专业人士更懂

4)用产品思维让自己破圈:尤其在做过产品经理后感触最深,分析师的产出是否有价值、能否落地,最关键的就是会不会提问题,毕竟怎么分析问题是跟在提出问题之后的;能否提一个好问题,一方面是考验对业务是否熟悉,一方面就是考验能否跳出自身的思维模式。搞技术的人,或多或少都容易把自己的逻辑搞成自闭环,只在同业的小群体内能互相理解,跳出群体就会有鸡同鸭讲的感觉,这种就是小逻辑,而我理解的大逻辑,不仅仅是缜密完备的,也应该是朴素易懂的。能让大部分人都理解你的逻辑,才能让逻辑发挥作用,否则就是自我陶醉;能否站在对方的角度思考问题,就是从小逻辑到大逻辑的关键。

二、策略产品经理的专注

1. 憧憬

“策略”这个词很性感,很飘逸,也很难被界定。

市面上有各式各样的策略产品经理,从岗位招聘要求上看,会给人一种大学里做数据建模的感觉,很亲切。

2. 现实

策略产品经理的主要任务,就是做策略。

虽然策略本身不好定义,但可以跟算法做个对比,在对比中稍微澄清一下。

打个比方:算法好比种菜的,策略好比炒菜的,炒菜的不用知道这个西红柿是怎么种出来的,那个鸡蛋是怎么生出来的,但需要知道西红柿和鸡蛋各自的特点,再根据特点设计菜的炒法;所以策略可以理解为对算法的应用,既然是应用,就要结合应用场景做个性化适配。

又比如:KFC在中国推出了豆浆油条一样,背后还是那套标准的餐饮供应管理体系,但在中国就有本土化;有时候,策略也可以是跳脱具体算法之外,因地制宜的设计一个计算逻辑,解决眼下应用场景的具像化问题。

在这个阶段,我主要做的是品牌广告方向的策略;背景很简单,每个投放品牌广告的客户,都是很有钱的爸爸,因为穷爸爸们只会锱铢必较的投效果广告——没人点击我就不掏钱。

但品牌广告爸爸们不一样,作为大牌,每年都有一定的预算用在培养消费者心智(洗脑),具体形式就是投放一些让你看了觉得很有意思、并能增加品牌正面认知的广告,不强求消费者看了就掏钱买的那种。

这类广告很难衡量效果,但爸爸们也不傻,想让我花钱,你至少要说清楚:

  1. 这次广告要投放给谁看?——找到合适的人
  2. 这次广告要在什么渠道来呈现?——在恰当的时机
  3. 这次广告主要突出的内容是什么?——说正确的话

为了回答这3个问题,过去传统的4A广告公司,就像影视作品里演的那样(比如《广告狂人》),通宵彻夜的脑暴、喝酒、抽烟、沉思,只为了灵光乍现的一刻;但现在4A公司和互联网广告巨头们,会强调用数据来驱动投放前的上述决策。

以百度为例:它知道很多人在想要购买一个商品之前的心路历程——搜索内容——把这些数据加以利用,就能避免纯创意层面上的撕扯(一千个人心中有一千个哈姆雷特,很难说我的创意就是绝对的好)。策略在这里的核心作用,就是利用数据设计出一个系统性的计算方法,解答上述3个问题。

少有人走过的路:分析、策略、产品

上图就是一个相对完整的解答流程,篇幅限制,今天只举例其中一个小环节:在消费者眼中,谁是我们的竞品?(上图中竞品分析模块)

少有人走过的路:分析、策略、产品

上面这个散点图,是竞品分析的传统做法。

以汽车行业举例,右上角的那个奇骏就是广告主爸爸的儿子——本品,剩下的那些都是竞品,哪个离奇骏最近,哪个就是本品的最大竞品。

传统做法从相似度和争夺率这2个维度来拆解“竞争”这个概念,试图量化点与点之间的距离。

但有问题,因为相似度和争夺率是这么计算的:

  1. 相似度:在一段时间内,既搜过本品也搜过竞品的用户,在搜过本品或搜过竞品的总用户中的比例(本品与竞品的交集/本品与竞品的并集)。
  2. 争夺率:在一段时间内,搜索过本品的用户中,有多少人还搜索过某个竞品(本品与竞品的交集/本品)。

问题1:如果我事先不输入任何竞品,这个方法就行不通(相似度和争夺率的核心都是算交集,可你不告诉我跟谁交,我怎么算?)。相当于它无法突破已知的经验范畴,而我们往往就是需要数据告知一些经验以外的东西。

问题2:这个方法中,只应用了“重合”这一个特征;然而用户的搜索行为是一个连续的序列,是有前后顺序(先搜A再搜B和先搜B再搜A,不一样)、有次数多寡(搜了10次A和只搜了1次A,不一样)、有距离远近的(刚搜完A就搜B,和搜完A之后又搜了CDE之再搜B,不一样),这些信息在传统方法中,都没有体现出来。

问题3:传统方法下,谁是竞品需要看图说话;那么问题来了,就拿图里的逍客和途观来说,看上去跟奇骏都比较近,到底哪个才是最强劲的竞争对手?

下图就是对传统方法的升级尝试,而且考虑需要向广告主介绍本次投放决策的理论依据,过程中的策略也需要很高的可解释性:

少有人走过的路:分析、策略、产品

少有人走过的路:分析、策略、产品

以奇骏为本品,对新策略做一个形象化解释:当我搜索过包含奇骏的某个关键词之后,如果我紧接着就搜索了逍客(特征=前后顺序+间隔位置),而且还搜索了很多次(特征=搜索次数),那么逍客与奇骏的竞争强度就会大大的增加。

怎么样,是不是很符合直观的认知?

这个策略不是一个离线的、一次性的计算,它后续落地到一个自动化的产品上。

它的优化空间还很大,比如拿用户的具体搜索内容来看,“逍客省油么?” VS “逍客4s店在哪儿?”,肯定是后者体现的购买意愿更强,竞争强度也就更强。

3. 困境

很开心在工作的第2~3年做这个岗位,它跟业务不远,对数据的应用又比较专注。

但策略的落地要么是在某个产品上,要么是依托于某个运营活动,我既不是做产品的、也不是做运营的,很难决定这个策略最终落地的形态和效果。

说到底,策略是一个承上启下的环节,往好了说是枢纽,往坏了说就是上不达天堂、下不接地气,接地气的事情我感觉我做过了,我想上天堂。

4. 破局

选择做一个产品经理,尤其是数据方向的产品经理,可以从最终端的场景反向贯穿整个流程,未尝不是一个破局的办法;

又或者,可以横向去尝试别的策略方向,比如推荐策略、反作弊策略,这些场景的需求量更大,有更多前辈经验的积累,不至于出现孤军奋战的感觉。

三、数据产品经理的开悟

1. 憧憬

最开始对数据产品经理的期待很朴素——产品经理是不是就可以指使别人干活,自己动动嘴皮子动动脑子就好了?

这样就能有大把的时间花在思考上面,而不是琐碎的体力劳动上了,而且还能自己的产品自己做主,从业务端需求的收集、到产品功能的设计、到功能中策略的填充、到最终上线后的运营和效果反馈,想想就很激动!此处,需要给曾经的自己一个“呵呵”。

2. 现实

后来我做过两类数据产品:

  • 一类是延续了在百度的广告方向,继续做品牌广告的投放前决策平台;
  • 另一类是做数据运营平台,某种程度上,就是BI报表的升级。

我也从一个被安排的明明白白、只需要专心捣鼓策略的学生型员工,变成一个家长式的、需要安排好大家的工作、时间被会议切割到支离破碎的社会型员工了。

同时,我的产品也并不能完全由我做主,方向上的事情会有各路老板的意志干预,也会有各路利益方入局博弈,很多时候我能做的,也往往是在妥协中尽量保持初心罢了。

但这个岗位给我最大的收获,就是逼迫我去直面问题的本质——到底哪些人需要这个产品?他们需要用它解决什么问题?我设计的东西到底有没有解决这些问题?

之前不论是做数据分析,还是策略产品,因为劳动成果很难独立的对用户产生影响,所以很少操心去思考那些问题。

反正我分析出了一些结论、做出了若干策略,最终效果好不好,还要取决于产品功能或运营活动的设计。

用户的反馈也很少直接冲着我来,自己可以稳坐后方钓鱼台。但数据产品经理需要走上前线,因为这个岗位的本质是产品,不是数据。

就拿做PC端的数据运营平台举例:这个平台的初期目标,就是服务好部门的200多人,快速准确的了解到部门孵化的10来个产品的数据表现。

最开始我脑海中只是天然的觉得,之前用过的那些第三方BI报表有缺陷,重展示轻分析;既然这次是自研平台,就做些不一样的,于是乎,有了下面这个东西:

少有人走过的路:分析、策略、产品

它的初衷是:

  1. 分析体系结构化(指标按照不同业务方向进行归类);
  2. 指标卡片化(一段时间范围内的总量、日均值、波动率);
  3. 卡片可点击(点击后可联动展示指标的波动分析);
  4. 内嵌指标波动分析方法(时间的对比+多维度的下钻,尤其是后者,直接量化定位波动原因);

然而,用户对上述4个设计初衷的直接反馈是:

  1. 指标分散,没法一次性找到所有想要的;
  2. 卡片太大占空间,浪费多余,还不如做成表格能一眼多看到更多指标;
  3. 能意识到可以点击,但点击后因为PC端高度限制,只能看到下方的趋势图跟着变动,根本注意不到再下面那个指标异动分析表格也在动;
  4. 经介绍说明后能理解异动分析对指标波动的解释,但理解有门槛;

问题很明显,我把这个数据产品的数据部分看的太重了,忽略了其产品的部分。

后来我发现,这也是现阶段很多数据产品经理同行的共性,数据>产品,偏离了岗位的本质。

这个数据运营平台,到底是解决谁的什么问题?

思考之后,有了下面这个迭代的版本:

  1. 用完成的业务流程串联起零散的指标;
  2. 指标卡片点击唤起浮层,所有分析展示一屏解决;
  3. 异动分析简化图形化,只保留核心概念;
  4. 原有顶部筛选控件位置优化,释放屏幕纵向空间;

少有人走过的路:分析、策略、产品

少有人走过的路:分析、策略、产品

迭代的终点还远远没到,后续有机会再专门开篇说下对这类数据运营平台的想法,尤其是跟AI的结合。

3. 困境

很多时候,数据产品类似一个中台型的产品。

没有中台的命,却有中台的病;如何兼容各方的个性化需求?如何评价数据产品的价值产出?这些问题既是我的“绝望之谷”,也会是我的“开悟之坡”。

4. 破局

不要让自己受限,这个限制可能是外界给予的,但更多时候是自己给予的。

我的经历告诉我,岗位是死的,但能力是活的。

数据分析师就只能钻研各种分析工具、统计模型么?策略产品经理就不能设计下产品的功能么?数据产品经理就只安心做好产品就够了么?

当你愿意抬头时,路就会越走越宽。

本文作者: 古牧聊数据,其版权均为原作者所有,文章内容系作者个人观点,不代表蜗牛派对观点赞同或支持,未经许可,请勿转载,题图来自Unsplash,基于CC0协议。

免责声明:本文版权归原作者所有,文章系作者个人观点不代表蜗牛派立场,如若转载请联系原作者;本站仅提供信息存储空间服务,内容仅为传递更多信息之目的,如涉及作品内容、版权等其它问题都请联系kefu@woniupai.net反馈!

]]>
http://www.woniupai.net/175398.html/feed 0
什么是数据敏感度?哪些因素会影响到数据敏感度? http://www.woniupai.net/175090.html http://www.woniupai.net/175090.html#respond Sat, 25 Jul 2020 10:47:41 +0000 http://www.woniupai.net/?p=175090

在各大厂的数据分析师数据产品经理产品经理等岗位的招聘要求里,我们经常看到“数据敏感度高”、“数据意识强”等信息。既然数据敏感度如此重要,大家如此重视数据敏感度,那么,到底什么是数据敏感度呢?今天就从五个方面来谈谈我对数据敏感度的理解。

一、什么是数据敏感度

数据敏感度其实有两种含义。第一种是指数据本身是否涉密、是否包含个人隐私或者涉及商业机密等,此时的数据敏感度实际上是指数据的涉密等级或安全性,涉及的机密越多则数据的敏感度越高;其二是指人对数据的敏锐察觉能力,是用来评估人对数据的及其代表的意义所表现出的应激式反应与洞察力。

通常,我们说到的数据敏感度是特指第二种,亦即对数据的敏感度。本文今天重点讨论的也是第二种。

二、如何理解数据敏感度

1、数据敏感度是一种综合素养

数据敏感度本质上是一种数据的洞察力,这种洞察力其实是个人数据修养和业务能力的综合体现。面对同样一个数据,有的人就能一眼看到危机感,有的人能一眼就能看出错误,有的人却熟视无睹、毫无感觉,这种差别是跟个人长期的业务积累和数据修养有关系的。“冰冻三尺,非一日之寒,骐骥千里,非一日之功”,要练就一双慧眼,要拥有收放自如的数据敏感度需要经过长期的刻意训练。关键时刻方显高手本色,高手在关键时刻的数据敏感度往往会带了奇迹般的发现,而这些发现可能决定着企业的生死存亡。这就是最能体现数据敏感度的价值感的高光时刻。

2、数据敏感度是对某些特定岗位的要求

数据敏感度还是一把标尺,这把标尺在招聘时可以用来筛选更符合要求的候选人。但数据敏感度应该是对某些特定岗位的要求,比如:数据分析师、数据建模工程师、数据产品经理等。这些人员经常与数据打交道,同时也经常用数据跟业务人员进行交流,因此,这些岗位对数据敏感度这方面的要求会高一些,此时的数据敏感度是必选项。但是,对于其它与数据或业务离的比较远的岗位,比如人力资源、行政后勤等岗位,有数据敏感度固然很好,但没有数据敏感度也无可厚非,此时的数据敏感度就是可选项,不是对岗位的硬性要求。因此,数据敏感度因人而异、因事而异,不能强求每个人都要对数据有敏感度。

3、数据敏感度是分等级的

数据敏感度既然是一把标尺,就能将测试者分出不同的等级。在笔者看来,数据敏感度分为三个等级:基础等级、高阶等级和大神级别。基础等级是只对数据敏感,也就说对数据是不是出现异常了、是不是有错漏了等有感觉,能立马发现这些异常现象。

比如:某一天APP的卸载量突然超出平常数值的20%以上,此时如能发现卸载量数据的异常算是达到了数据敏感度的基本要求;高阶等级不仅要求对数据本身是否出现异常有判断力,还要求分析到这种异常数据背后的原因是什么、异常数据会带来业务哪些影响、接下来应该做些什么等。此时的数据敏感度一方面要求具备对数据本身的觉察力,另一方面还要求具备高度的业务反应力,能将数据与业务的关系厘清;第三个等级就是大神级别,这个级别的数据敏感度要求当事人具备丰富的业务实战经验和超强的数据洞察力,不仅要厘清数据背后的原因,还要能分析出数据异常所牵连的各种关联关系,并预见到可能带来的各种影响,还能在此基础上把握好时机、做出关键的决策。

比如:我们经常听说到股市上有些大神的传说,他们总是能从各种事件中嗅出政策走向和股票趋势来,然后基于对某些股票股价变化的敏感度,总能判断出最合适的抄底机会,入手后再选择合适的清仓时机出手。这些股市的大神能做到如此出神入化,一方面固然是与他们有多年的炒股经验、操盘经历有关,另一方面与他们对股票数据的敏感度也是密不可分的。

4、数据敏感度并非与生俱来的,是可以训练和培养的

人并非生来就有数据敏感度的,但是诸多事实证明数据敏感度是可以通过刻意训练来提高的。之所以说数据敏感度并非与生俱来的,是因为我们这里所说的数据敏感度是在职场和商业的语境下的,也就说先要进入职场,然后做与数据和业务相关的工作,还要经常与数据打交道、用数据作为沟通语言,有了这样的约束条件后,再说有意愿训练数据敏感度,最后能坚持下来、能在数据敏感度上有所成绩的就少之又少了。数据敏感度既然可以通过后天的努力来提升,那么,只要依照恰当的方法就可以训练出来,这个在下文中会继续细说。

什么是数据敏感度,我对数据敏感度的理解!

三、哪些因素会影响到数据敏感度

前面说到数据敏感度实质上是一种洞察力,那么,到底哪些因素会影响到我们的数据敏感度呢?笔者认为:业务常识、相关度、关注度、个人经历、个人精力、记忆力等因素都在一定程度上影响到我们的数据敏感度。

业务常识比较容易理解,就是最对所从事的行业有一个基本的认知和商业common sense 。比如:你如果在电信运营商行业工作,你至少应该大面上知道三大运营商的移动用户数、4G用户数、各自的平均ARPU等,如果你在移动互联网行业,那你对APP的次日留存、三日留存、月留存、付费率等指标的平均值应该有一定的概念。再比如:微信公众号文章的粉丝打开率平均值一般在10%左右,如果你的微信公众号的某篇文章打开率超过了30%,那就说明你的文章比较受粉丝的追捧,或者是文章的传播有不错的效果。

相关度和关注度。人们总是习惯性的去关注与自己工作相关度较高的事物和数据。所谓“萝卜青菜各有所爱”,关注与自己相关度高的数据,而不关注与自己不相关的数据,这也是人之常情。只有先关注到这些与自己相关度高的数据,才有可能产生数据的敏感度,对自己不相关、不感兴趣的数据一般情况下是不太会产生数据敏感度的。

个人经历和精力。数据敏感度与每个职场人的经历相关,职场经历成就个人的业务经验和见识。比如:某咨询顾问写的PPT分析报告,自己认为写的滴水不漏的,可是在甲方面前就被人看出来一个数据的小问题,然后一个数据问题就牵扯出一些列的数据和结论都站不住脚。这种因数据问题被Diss经历对于培养职场人的数据敏感度绝对是一种很好的学习教材;还有就是个人的精力也会影响到数据敏感度。在信息爆炸的今天,我们每个人每天都会接收到很多的信息,加之个人的精力有限,当我们把大部分精力投入到了某项工作时,可能分配给另外某些工作的精力就十分有限,此时就可能对这些工作上的数据就没有产生应有的警觉和敏感了。

数据敏感度还与个人的记忆力有关。我们知道,数据的敏感度有时候就是来自于对数据的前后比较。当我们没有记住一些关键指标的常规表现数值时,当这些指标出现异常时我们就可能视而不见,没有了记忆就没有了比较,没有比较就失去了判断。所以有时候牢记一些关键指标和数据,是培养我们的数据敏感度的基础。

综上所述,业务常识、相关度和关注度、个人经历和精力、记忆力等是影响数据敏感度的常见因素。之所以提到这些方面,是希望我们在着力训练和培养自身的数据敏感度时,能特别注意到这些因素。

四、如何培养数据敏感度

训练和培养对数据的敏感度应该是大家比较感兴趣的话题。结合自身的体会,笔者觉得需要从六个方面着力培养自己的数据敏感度:刻意加强“三个训练”、做到“三有”。

刻意加强三个“训练”:

1、加强数据化思维训练:为培养数据敏感性,可以在工作和生活中刻意加强自己的数据化思维。训练自己用数量化的语言进行描述和表达,比如:在做自我介绍时,可以将自己进行数量化包装:工作了多少年,做了多少个项目,负责过多少个产品case,带过多少人的团队,实现了多大的业绩等等。凡事不以感情做判断,而以“数量”、“金额”、“比例”等指标作为衡量的尺度。再如:在介绍某个项目的效果时,用数据说话,将效果的表达换算成提升幅度、增长率、投入产出比等数据和指标。

2、加强图表解读能力训练:图表化表达是对数据进行分析和展现的常用方式。要加强对数据可视化的理解和解读能力,训练自己看图说话的能力,要善于前后对照、关联分析和交叉比对,从图表中发现规律。请教相关领域专家,明白可视化图表背后的意义,组织语言进行描述性练习,反复练习和训练,自己明白的同时也要让听众听明白。图表解读能力提高了,数据敏感度就会随之提高。

3、加强批判性思维训练:要刻意训练自己的批判性思维,对外部给到的数据都要心存怀疑,都要问清楚数据来源和计算口径,必要时亲自上手进行“交叉验证”。批判性思维是一种能力,就像是古董专家,刚入行的时候,对每一件古董都需要翻阅大量的文献书籍,反复核对和验证。量变就会引发质变,功到自然成,当验的货到了一定数量级时,你就会自然而然的炼就了一双慧眼,只要一掌手、一上眼就能判断它的成色。此时,也就是你练就数据敏感度的时刻了。

做到“三有”:

1、有谱:要熟悉自身的业务,业务水平要靠谱,要对业务建立深刻的理解和知识点的储备,这是培养数据敏感性的基础。有谱是指对数据所代表的业务信息要有一个基本的认知和概念。所谓靠谱,至少是对某些数据的来龙去脉要清楚,对该数据的业内平均水平、最高水平、最低水平有一个清醒的认识,要知道数据的变动所代表的意义。

2、有心:在日常工作中,要学会做一个有心人,探究数据背后隐藏的信息。要走心去刨根问底关键数据的业务逻辑和计算规则,要留心关键数据的变化,用心记住关键的指标数值。

3、有感:当数据出现异常值时,要能形成对数据走势的预感和判断,并在后续的工作中观察自己的预感是否得到了印证。还要注重基于业务逻辑进行关联思考,对关键数据的连锁反应建立自己的“感想”和观点。

数据敏感度是可以通过刻意训练、逐步形成习惯的。秘密就在于:“三个训练”、“三有”,你GET到了吗?数据敏感度,你值得拥有!

什么是数据敏感度,我对数据敏感度的理解!

五、AI时代还需要数据敏感度吗

在大数据和人工智能时代,机器在人类的训练下正逐步具备一定的学习能力。既然数据敏感度是可以通过学习和训练来获得的,那么,机器只要经过适当的驯养和调教,就有可能形成自己的数据敏感度。理论上说机器具备数据敏感度是有可能实现的。一旦机器也对数据有了一定的敏感度,人类还需要继续保持自己的数据敏感度吗?是不是可以把数据监测、数据解读和判断的事情全部交给机器来处理呢?笔者认为,短期内还是要坚持以人为主的模式,即使在AI时代,人类仍然需要主宰自己的数据敏感度。

机器固然能具备一定的数据敏感度,但是在运用数据来解读业务的能力仍然有一定的局限性。在对数据进行分析和解读时,一个基本的原则就是:结构化的数据以人为主,非结构化数据可以借助机器的支持;小数据以人为主,大数据可以借助机器的算力的支持;关键的数据以人为主,非关键的数据可以借助机器的力量。

本文作者: 大数据产品设计与运营 ,其版权均为原作者所有,文章内容系作者个人观点,不代表蜗牛派对观点赞同或支持,未经许可,请勿转载,题图来自Unsplash,基于CC0协议。

免责声明:本文版权归原作者所有,文章系作者个人观点不代表蜗牛派立场,如若转载请联系原作者;本站仅提供信息存储空间服务,内容仅为传递更多信息之目的,如涉及作品内容、版权等其它问题都请联系kefu@woniupai.net反馈!

]]>
http://www.woniupai.net/175090.html/feed 0
什么是数据分析师?数据分析师的工作职责又是什么? http://www.woniupai.net/170120.html http://www.woniupai.net/170120.html#respond Mon, 20 Jul 2020 00:43:44 +0000 http://www.woniupai.net/?p=170120

“我可能干了个假的数据分析师!”经常有同学发出这种感慨,然后到处发《数据分析师是干什么的》《数据分析师、数据工程师数据运营数据挖掘工程师商业数据分析师、我随便写个什么分析师之间到底有什么区别》一类的帖子。之所以会这样,是因为大家看的常常是理想状态下的数据分析岗位职责与内容。

数据分析师的工作职责是什么?

从本质上讲,数据分析是个技能,人人都可以学,人人都可以用。“数据分析”四个字拆开,可以细分成偏技术的“数据”部分——采集、存储、加工、展示数据;偏业务的“分析”部分——定义问题,设计思路、寻找答案、验证假设、跟踪结果。技能人人可以学,但在企业中,具体的活是得有人干的。在企业里,员工是按组织架构编排的。数据分析工作,最终还是要分配到某一个部门的某一个岗位。

蛋疼就从岗位开始……

因为数据分析不像销售、产品、运营一样是刚性岗位,大部分企业并不依靠数据分析挣钱吃饭。因此,数据分析岗位就不是一个常设岗位或者必须岗位。简单来说,这是个后娘养的部门。因此组织架构的设置就千奇百怪。导致的后果,就是:理想永远是美好的,现实只能自求多福。大家在网上看到的各种科学合理的“数据分析流程”“数据驱动业务”,到了现实里就七零八落。

理论上,在技术端,至少需要数据仓储,数据分析两个组,才能扛得住工作。数仓组搞掂数据采集、架构、性能问题,分析组搞掂取数问题。可实际上有完整架构的屈指可数,草台班子满地都是:

数据分析师的工作职责是什么?

这就是无数做技术的同学苦恼的根源:公司没有重视数据这回事,指望一个人把数仓到BI到建模全搞了。于是搞得办事的人各种苦逼。尤其这两年,人工智能的东风给领导的朋友圈吹来了无数数据分析如何牛逼的文章。搞得能力向下兼容的招聘风气日盛。领导们想当然的以为“算法那么复杂,那么牛逼,找一个会算法的不就什么问题都能解决了?”

还真搞不掂。因为能力归能力,工作归工作。数据分析的工作方式,决定了一个人能做的是很有限的(如下图)。即使一个人有能力全部做,他也没精力同时出现在业务部门开会的会议室,跑数的工位,开发的机房三个地方。且不说仅仅是清洗数据,就需要消耗大量精力。过度指望一个人大包大揽的结果,就是丫样样都会一点,但样样不精通。

数据分析师的工作职责是什么?

2,3,4步是开发的硬活,5,6,7步是数据分析的本质工作,但做算法、做专题、开发报表的工作细节完全不同,而1、8正是数据分析的起点与终点,不考虑业务需求,不跟踪业务效果,做了分析又有啥用呢?

在业务端,问题恰恰相反,是个人都想搞个分析,结果基层的表哥表姐越养越多(如下图)。

数据分析师的工作职责是什么?

业务部门需要的是分析结论,不是一个数字。单纯告诉业务部门“本月销量350w,客户复购率20%”屁用没用,业务部门需要的是“这到底说明了什么问题”!做技术的同事,往往只能提供数字,而不是分析结论,所以业务部门养“分析专员”的风气就越演越烈。相当多的领导都喜欢安排一两个数据XX在组织下边,这里只列了一点点,实际上的还有更多更多的表哥表姐岗位……

数据砖员们的工作是很辛苦的。虽然名字也带“数据分析”然而做的工作基本就是在excel里搬数据(常常往返于csv格式与excel工作薄格式之间),做图表,贴到ppt里,在折线图下边写上:“本月销量低了,要搞高!”然后就能静静等着领导回复:“分析的一点也不深入!”了

鬼愿意过这种日子啊!

业务端的分析,需要对业务本身有认识和较深的分析能力积累。这样才能有勇气和手段从合作部门嘴里了解到业务到底在干什么,才能在经营过程中准确定义问题,才能构建适合自己公司的分析思路。这些都不是花5000雇个表哥表姐能解决的。可怜的基层表哥表姐们,往往都是新入职没两年,在公司人都不认识几个。别说分析问题了,连张嘴问别人问题,都会吃一个白眼:“关你什么事,做你的去”。这样的状态真的分析不了啥。

我非常能理解业务部门老大们对IT的不满。“就知道跑个数字,分析啥了?”这种抱怨从我入行第一天一直听到现在;我也非常能理解业务部门老大们用数据分析当招牌填充人编的做法。问题是这样大量铺专员真的不是解决问题的办法。因为想要分析输出结论,需要的是做分析报告的人有分析思路和解决问题的能力。正如郭德纲讲相声好笑,那是因为他会讲相声,不是因为他长得胖。以为花5000雇个表哥做个ppt就能分析了,就像以为从街上拉个矮胖子就能把人逗笑一样……

所以理论上讲,最好的结构应该是业务端找有资历,有经验的少数人承担。技术端按需求排架构,多一些人把数据质量、数据处理、BI做起来。这样数据质量高,数据形式多,方便使用,同时业务上也能解读出含义,有能力推动数据成果落地——然鹅这又是一个理想。从业那么多年,除了银行体系和少数大型互联网公司外。就没几个企业真的重视这回事,该招表哥继续招表哥,该养阿尔法狗继续养狗。

那个,开心就好……

正如某位前辈所言:现阶段数据分析领域的主要矛盾,是人民群众日益增长的对大数据人工智能的幻想,与落后的基础数据开发建设之间的矛盾。

这两年能清晰数据的角色和地位的企业相对多了一些,早些年情况更混乱。XX分析师的XX甚至都是HR小妹妹现编的,岗位JD里复制一段话出来百度,都能找出来一堆一模一样的JD。那个年代我接到猎头电话,往往在丫blabla一堆“分析”“挖掘”“模型”名词之后。直接来这么一句:来,我们说点实在的,向什么部门的领导汇报?是写ppt的还是写代码的?区分效果群拔!

总之不要被名字框死了思路,不要太纠结名字的文字。要看自己具体的工作内容,自己挂在哪个部门下边,具体分析,才能看清前途。

本文作者: 接地气学堂,其版权均为原作者所有,文章内容系作者个人观点,不代表蜗牛派对观点赞同或支持,未经许可,请勿转载,题图来自Unsplash,基于CC0协议。

免责声明:本文版权归原作者所有,文章系作者个人观点不代表蜗牛派立场,如若转载请联系原作者;本站仅提供信息存储空间服务,内容仅为传递更多信息之目的,如涉及作品内容、版权等其它问题都请联系kefu@woniupai.net反馈!

]]>
http://www.woniupai.net/170120.html/feed 0
浅析数据产品经理的招聘要求和技能梳理 http://www.woniupai.net/168300.html http://www.woniupai.net/168300.html#respond Thu, 16 Jul 2020 23:12:13 +0000 http://www.woniupai.net/?p=168300

数据产品大致分为平台型和商业型,不同类型的数据产品经理所负责的内容也不相同,那怎么区分和判断两个类型呢?本文作者详细分析了数据产品经理的招聘要求和技能梳理。

数据产品经理的招聘要求和技能

一、何为数据产品

数据产品的类型多种多样,大致分为两类:

  1. 平台型:主要产品是“数据工具”,最重要的目标是保障数据的正确性和时效性,以及提高数据处理的效率。
  2. 商业型:主要产品是“数据解决方案”,最重要的目标是通过数据洞察业务发展趋势、进而驱动业务增长,相较于平台型更加贴近前台一些。

更直观一些,比如:

阿里的飞天大数据平台,集成了多种类型的数据产品,其引擎平台(大数据计算引擎MaxCompute、图计算引擎GraphCompute等)是平台类型的;

上层业务场景(新零售、金融科技、数据政府等)中的数据产品就是商业型的。

数据产品经理的招聘要求和技能

二、数据产品经理的招聘要求

以下分析抛开与产品经理的共性部分,重点分析“数据”产品经理的特性部分。

首先来看一下平台型的招聘要求,以下选取了三个招聘JD,可以看出平台型的招聘除了通用的产品技能要求外,往往会有「有X技术经验者优先」的描述;

事实上数据产品经理在产品的设计、规划和落地方面,和技术人员的沟通非常多,此外还有一个很重要的原因,如果你完全不懂技术,可能很难get到平台用户的使用痛点。

那么是不是不会写代码就无法胜任这个岗位呢?

也不是,毕竟数据产品经理归根结底还是“重产品”,懂技术也不意味着必要要行云流水自己动手写代码。

数据产品经理的招聘要求和技能

数据产品经理的招聘要求和技能

数据产品经理的招聘要求和技能

接下来咱们再来看一下商业型的数据产品经理,商业型相较于平台型更加贴近业务场景和盈利目标,往往要求工作人员有较强的数据分析能力和敏锐的商业嗅觉,为产品运营提供高效、准确的数据支撑。

说到这大家可能有疑惑了,这听起来怎么这么像“数据分析师”呢?

数据产品在一定程度上可以看作是数据分析的一种固化形式,通过对分析工作进行抽丝剥茧,提取共性部分,形成体系化的产品以更加直观、高效的方式展现给公司决策者、运营人员或者用户。

数据产品经理的招聘要求和技能

数据产品经理的招聘要求和技能

三、数据产品经理技能树

数据产品经理的技能要求还是比较广的,除了产品经理应该具备的“产品规划能力”、“项目管理能力”、“行业洞察能力”,还需要“数据业务能力”和“数据工具能力”。

数据产品经理的招聘要求和技能

数据业务能力:梳理和设计指标字典,统一业务口径,打通各系统甚至是事业群之间的数据联通;数据埋点,通过埋点获取更多的数据底料,支撑上层的数据应用;数据仓库,了解数仓原理,能够和技术人员一同探究更符合业务需求、更具扩展性的数仓架构;数据分析,挖掘用户需求,能够自研究或者精准把握数据分析师的思路,从而提炼固化成产品形态;数据可视化,虽说“好看的皮囊千篇一律,有趣的灵魂万里挑一”,但是庸俗的皮囊很可能导致“用户闪退”哟。

数据工具能力:很多数据产品经理服务于数据中台,尤其是平台型产品经理,不说对大数据组件如数家珍,但是基本的框架还是很有必要了解的,除了更有利于了解实际用户的痛点并且构思解决方案,而且也便于和程序员小哥哥高效沟通,防止被无限期排期。至于动手写SQL的能力,更是人手必备,公司的数据分析师也不是为个人服务的,要想第一时间了解数据,还得自己动手,丰衣足食。

产品规划能力:数据产品也是产品,所以挖掘用户需求、提炼产品方案是必不可少的,如果非要说有哪些区别,产品经理更关注C端客户的体验、功能布局等,数据产品经理更聚焦数据本身,挖空心思怎么能直观地体现数据价值。

项目管理能力:作为一名优秀的产品经理,需要争取各类资源(数据工程师、算法工程师、前端工程师、测试工程师等),这就需要向老板阐述这个产品将带来的价值(对外盈利或是对内节约成本等),积极争取老板的资源倾斜。拿到资源才是个开始,后续推动开发进度、及时根据外部环境变化调整策略,直到最后产品顺利上线,这个过程好比十月怀胎。

行业洞察能力:这条可谓是拉开产品经理高低的分水岭,在信息高度开放的今天,只要足够的勤奋和努力,获取硬技能无非就是时间长短的问题,但是业务洞察往往需要一点天分,甚至是运气。遇到好的团队、好的项目,天时地利人和才能登高而上、一览众山小,从而开阔眼界,看到更远的未来。

本文作者: 汪仔8670,其版权均为原作者所有,文章内容系作者个人观点,不代表蜗牛派对观点赞同或支持,未经许可,请勿转载,题图来自Unsplash,基于CC0协议。

免责声明:本文版权归原作者所有,文章系作者个人观点不代表蜗牛派立场,如若转载请联系原作者;本站仅提供信息存储空间服务,内容仅为传递更多信息之目的,如涉及作品内容、版权等其它问题都请联系kefu@woniupai.net反馈!

]]>
http://www.woniupai.net/168300.html/feed 0
数据分析师如何打造人见人爱的数据产品? http://www.woniupai.net/162197.html http://www.woniupai.net/162197.html#respond Thu, 09 Jul 2020 09:06:39 +0000 http://www.woniupai.net/?p=162197

上一篇《数据分析师的绩效,该如何考核?》引发同学们很大反响。很多同学表示:我明明做了BI,可为啥体现不了业绩,甚至平时看报表的人都不多。搞得领导天天质疑:我们的BI就这点作用?

数据分析师,如何打造人见人爱的数据产品

咋整?!

实际上,酒香也怕巷子深。种种问题,和很多同学只会埋头敲键盘,不会抬头讲故事有关系。今天我们来个最通俗易懂的分享,大家坐好扶稳哦。

01、数据产品为啥没用

问一个简单的问题:一个销售,这个月业绩不好,他会怎么办?

他会把客户电话扫一轮
他会跑断腿找潜在客户
他会到处打听最新促销
他会虔诚求教忽悠话术

咦?数据呢?

是滴,他唯一不干的就是看数据。他但凡会看数据,都不会在一线干了。甚至他坐办公室里看数据,还会被领导踢屁股:“天天不干活!哪里来业绩!”对销售、店员、柜员这种一线基层,数据根本没啥用。他们关心的是具体可以干什么

那他们领导会不会关心呢?会关心,但是他们只关心结果

这个月做了多少?
还差多少才达标?
哪个小兔崽子做的最差?

之后估计就气冲冲的踢屁股去了。

面对嗷嗷待哺的下属,他们需要的是话术、名单、方法、政策。唯独没有数据。

这就是大多数实体企业的真实写照:要挣钱,追业绩,只管加行动量,不管背后的逻辑。然而,他们的高层管理往往很希望推动数字化转型、信息化建设等等。于是悲剧开始上演:负责数据的哥们和老板谈完,自以为手握尚方宝剑入场,开始大搞BI系统,数据建模,数仓建设。结果下边的人不敢攻击老板,可他敢攻击你这个干活的呀,于是各种吐槽:“你这大数据有毛用!不好用!能帮我卖1毛钱货吗!”几轮吐槽下来,灰头土脸,黯然收场。

咋办?╮(╯﹏╰)╭

02、问题的本质是什么

问题的本质,是:数据不是祖传的救命仙丹,它不能一吃就灵。对销售业绩而言,促销才是救命仙丹,一降价肯定有销量。但我们知道,所谓的救命仙丹其实都是汞、硝、硫磺这种剧毒玩意,嗑多了人就挂了。所以数据更像是保健品,虽然吃了不救命,但是平时吃的多,根本不会拖到需要嗑仙丹的地步。如何把这种缓慢的保健效果可视化,才是数据产品真正难题。

“那为啥我们不去学卖保健品的呢!”不要笑,陈老师不但这么说了,而且这么干了。而且真的当司机,跟一帮老太太一起去参加那种不是传销也跟传销差不多的组织,举办的老年农家乐。而且很认真的总结了他们的推广套路。简单来说,就是:分而治之,威逼利诱

首先,卖保健品的从来不会说自己是蛋白粉,蛋白粉多普通,一般会提什么:XX氨基酸,XX核酸,XX分子,总之名字特别高大上。其次,卖保健品从来不会说自己只是个辅食,人家张口就是:延年益寿,长命百岁。于是第一波好奇心强又不差钱的老太太就会来尝试。

有了从0到1的突破,后边的都好整了!

第二波,开始打小恩小惠吸引:“你看这么好的东西,你试一点又不吃亏,已经有人在买了,你看人家吃得多好,现在买还送鸡蛋、牛奶、大米、油、周末还能去农家乐呢”——就这么着又圈一波老太太。

第三波,开始打从众效应:“你看大家都在卖,你也试试嘛,这么多人都买肯定错不了”——就这么着又圈一波老太太。

第四波,开始威胁恫吓:“诶呀,你看那个阿姨,大家都在用她不用,真可惜,可能她孩子平时不给她钱吧/可能她经济实力不行吧,太可惜了太可惜了”——是滴,你不买你就很可怜,你就不如别人,就这么连吓带吐槽的,把最后一波老太太也收割掉。

PS:这就是为啥这些人喜欢在封闭的空间,比如郊区酒店、农家乐开大会的原因,环境封闭了,又有吃有喝,这事就很容办,在小圈子人们很容易被周边人带动情绪。

完美!

讲到这,是不是大家都明白了BI(Business Intelligence)的本质!以前我也好奇,BI明明是一个数据产品,可偏偏起了个连数据都没有的名字。哪里商业了?哪里又智能了?现在懂了——你提数据产品,就像和老太太提蛋白粉一样,他们根本不care。

你得起一个一听就跟企业赚钱有关系(商业)且一听就很高深别人不咋明白的名字(智能),才能启动第一波忽悠。这就是我们卖给企业的延年益寿膏。不亏是来自安利老家的Gartner,当年他们起BI这个名字的时候,是不是也和安利切磋过呢……

破局就从这开始。

03、数据产品破局思路

首先要清晰:我们首先得买数据的,其次才能造好数据的。如果数据没好的买主,没有吸引买主的卖点,字段、模型、公式、图表,搞得越多别人听的越烦。站在买主的角度思考:我能有什么用”,我是能帮他加强对一线的管控,还是能让一线更轻松干活?先抓客户需求,再谈落地。

数据分析师,如何打造人见人爱的数据产品

其次要清晰:数据很难单独产生价值,需要用数据的人来配合。所以“人”是关键问题。不同的人有对数据不同的诉求,对数据的理解有不同程度。因此要:分而治之。先找到那些对数据最信任,最喜欢的用人做第一波种之后分五个层级,逐步推进。

数据分析师,如何打造人见人爱的数据产品

再次要有推进手段。前边说的:神奇概念、小恩小惠、从众效应、威胁恫吓这四招非常好用,实际上在操作中常常是混着用的。如果客户喜欢玄乎的,你可以跟他谈:大数据、人工智能。如果客户喜欢接地气的,你可以谈:销售助手、店长助理;如果客户想从基层做起,你可以跟他谈:一线赋能,能力裂变,经验传承。如果客户想加强从上到下的管理,你可以谈数据驱动、数据化管理。总之概念要包装到位。总之,总有概念可以用。

小恩小惠的打法,在向一线推广非常有用。当年还没有微信红包的时候,陈老师就曾经在企业CRM里做了个红包页面,每天晚上6点弹一个:“恭喜你获得今天总裁/区总/店长红包”销售们都可喜欢看了,点进去看看我今天挣了多少。

当然,这只是个噱头,进去以后大部分人只有几分钱,且只是个数字而已,说的是月底发工资到账,可实际上经常没人记得。但是当天每个区业绩最好的人,真的有一个88的红包,而且其他人也看的到,这时候大家会好奇:他怎么卖的这么好?再往下点击,真正想推的数据产品就藏在这里。

数据分析师,如何打造人见人爱的数据产品

一点小手段,就把数据产品在一线的使用率直接拉起来了。当然,对领导们就不能用这种小手段,而是靠摆整体经营结果——你看人家店就是有妙招!你想知道不?你看人家推A产品就是推得动!想知道不?把优秀团队的行为数字化,直接看图说话,很快领导们都接受数据产品的使用了。

等使用率起来,就开始搞从众效应:大部分分公司都用统一数据模板汇报,你咋不用?!等更多的人在用了,就开始威胁恫吓:业绩不好还不看“销售助手”,难怪做不起来!于是成功突破了开头的问题把数据产品普及出去。

当然这些手段有些过时了。一方面是随着互联网客户的增多,很多需求不再来自销售,而是运营部门,运营天生喜欢看数据,就不需要用这些坑蒙拐骗的手段。二来,从2017年开始,整个社会的风气,不是鄙视数据,而变成了迷信数据,于是避免过度期望,反而成了项目的主要方向。但这套思路依然在某些领域管用,比如美团、头条、58这种披着互联网外衣实则养着巨大的线下团队的公司,比如很多仍在信息化、数字化转型泥潭中挣扎的公司。

当然,分享这些早年经历给同学们,更多是希望大家感受到我们这些老头子们当年逢山开路,遇水搭桥的思路过程。从来就没有生下来就领导英明、同事和睦、队友给力、客户人傻钱多的行业,所有的问题都是从“人”这里产生,再通过“人”的思路来解决,与大家共勉。

那么问题便来了,新时代的两个问题:

1、运营总喜欢自己看数据,然后diss数据分析师做的没啥用

2、业务部门总指望“大数据、人工智能、精准”,可数据基础又很烂

免责声明:本文版权归原作者所有,文章系作者个人观点不代表蜗牛派立场,如若转载请联系原作者;本站仅提供信息存储空间服务,内容仅为传递更多信息之目的,如涉及作品内容、版权等其它问题都请联系kefu@woniupai.net反馈!

]]>
http://www.woniupai.net/162197.html/feed 0